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Weakly supervised part-of-speech (POS) tagging is to learn to predict the POS tag for a given word in context

by making use of partial annotated data instead of the fully tagged corpora. Weakly supervised POS tagging

would benefit various natural language processing applications in such languages where tagged corpora are

mostly unavailable.

In this article, we propose a novel framework for weakly supervised POS tagging based on a dictionary of

words with their possible POS tags. In the constrained error-correcting output codes (ECOC)-based approach,

a unique L-bit vector is assigned to each POS tag. The set of bitvectors is referred to as a coding matrix with

value {1,−1}. Each column of the coding matrix specifies a dichotomy over the tag space to learn a binary

classifier. For each binary classifier, its training data is generated in the following way: each pair of words

and its possible POS tags are considered as a positive training example only if the whole set of its possible

tags falls into the positive dichotomy specified by the column coding and similarly for negative training

examples. Given a word in context, its POS tag is predicted by concatenating the predictive outputs of the L
binary classifiers and choosing the tag with the closest distance according to some measure. By incorporating

the ECOC strategy, the set of all possible tags for each word is treated as an entirety without the need of

performing disambiguation. Moreover, instead ofmanual feature engineering employed inmost previous POS

tagging approaches, features for training and testing in the proposed framework are automatically generated

using neural language modeling. The proposed framework has been evaluated on three corpora for English,

Italian, andMalagasy POS tagging, achieving accuracies of 93.21%, 90.9%, and 84.5% individually, which shows

a significant improvement compared to the state-of-the-art approaches.
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1 INTRODUCTION

Part-of-speech (POS) tagging is to assign a particular part of speech to a word in a text based on its
definition and context. It is crucial for further natural language processing (NLP) components such
as named entity recognition [37], syntactic parsing [9], and event extraction [36]. Methods for POS
tagging fall into two distinctive categories: rule-based and machine-learning-based. Rule-based
approaches rely on manually designed rules while the performance of machine-learning-based
approaches depends on the size and quality of the annotated corpora.
However, there are more than 50 low-density languages where both tagged corpora and lan-

guage speakers are mostly unavailable [11]. Weakly supervised POS tagging might benefit NLP in
such languages. In this article, weakly supervised POS tagging is to learn to predict POS tagging
for a given word in context given a dictionary of words with their possible POS tags as shown in
Table 1. However, it is difficult to conduct weakly supervised POS tagging since the ground-truth
POS tag of the word in the sentence is hidden in its possible POS tags and is not directly accessible
by the learning algorithm. One common way to learn from the dictionary of candidate POS tags is
to regard the ground-truth tag as a latent variable that is identified via iterative refining procedure.
Therefore, previous weakly supervised POS tagging approaches are largely based on expectation
maximization (EM) parameters estimation using hidden Markov models (HMMs) or conditional
random fields (CRFs). For example, Merialdo [22] employs maximum likelihood estimation to train
a trigram HMM. Following this way, some improvements are achieved by modifying the statistical
model or employing better parameter estimation techniques. For example, Banko and Moore [3]
modify the basic HMM structure to employ the context on both sides of the word to be tagged. In
Reference [30], contrastive estimation is employed on CRF for POS tagging.

Regarding the ground-truth tag as latent variable, most of the approaches mentioned above
are based on disambiguation. Although disambiguation presents as an intuitive and reasonable
strategy to weakly supervised POS tagging, its effectiveness is largely affected by the false positive
tag(s) within possible tags. For disambiguation in ground-truth tag identification, the identified tag
refined in each iteration might turn out to be the false positive label instead of the ground truth
one. Therefore, the negative influence brought by false positive tags will be more pronounced as
the size of possible tags increases.
In this article, we propose a novel strategy for weakly supervised POS tagging. It does not rely

on disambiguating possible POS tags. In specific, error-correcting output codes (ECOC) [14], one
of the famous multi-class learning techniques is adapted. A unique L-bit vector is assigned to
each POS tag. The set of bitvectors is referred to as coding matrix and denoted as M with value
{1,−1}. Each column of the coding matrix M specifies a dichotomy over the tag space to learn
a binary classifier. For example, given a set of POS tags {VB, DT, VBP, NN}, the column of M
[−1,+1,−1,+1]T separates the tag space into the negative dichotomy {VB, VBP} and the positive
dichotomy {DT, NN}. The key adaptation lies in how the binary classifiers corresponding to the
ECOC coding matrix M are built. For each column of the binary coding matrix M , the binary
classifier is built based on binary training examples derived from the dictionary of the words with
their possible POS tags. Specifically, the word will be regarded as a positive or negative training
example only if its possible tags entirely fall into the positive or negative dichotomy specified by
the column coding. In this way, the set of possible tags is treated as an entirety without resorting
to any disambiguation procedure. Moreover, the choice of features is a critical success factor for
POS tagging. Most of the state-of-the-art POS tagging systems address their tasks by exploring
the lexical context of the words to be tagged and their letter structure (e.g., presence of suffixes,
capitalization, and hyphenation). Obviously, such feature design needs domain knowledge and
expertise. In this article, features employed for weakly supervised POS tagging are generated based
on neural language modeling without manual intervene.
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Table 1. An Example of Input and Output of Weakly Supervised POS Tagging (PRP Stands

for Personal Pronoun, DT for Determiner, JJ for Adjective, VB for Verb Base Form,

CD for Cardinal Number, and So On)

Dictionary of words with their possible POS tags
you PRP; these DT; events NNS; took VBD; 35 CD; years NNS; ago IN RB; to IN JJ TO; place
NN VB VBP; recognize VB VBP; that DT IN NN RB VBP WDT; have JJ VBD VBN VBP;. . .
Sentence POS tagging
You have to recognize that these events took
place 35 years ago.

You/PRP have/VBP to/TO recognize/VB
that/IN these/DT events/NNS took/VBD
place/NN 35/CD years/NNS ago/IN ./.

The main contributions of the article are summarized below:

—We proposed a novel framework based on constrained ECOC for weakly supervised POS
tagging. In such a way, the set of a word’s possible tags is treated as an entirety without
resorting to any disambiguation procedure. It can easily avoid the disadvantage of disam-
biguation strategy, a common way for weakly supervised POS tagging.

—We developed a POS tagging system without human intervention. Features employed for
POS tagging are generated automatically based on neural language modeling.

—We evaluated the proposed framework on three corpora for English, Italian, and Malagasy
POS tagging, and observed a significant improvement in accuracy compared to the state-
of-the-art approaches.

2 RELATEDWORK

Satisfactory results have been achieved in supervised POS tagging. The best taggers can obtain
tagging accuracies over 97% on the English Penn Treebank. However, there are more than 50 low-
density languages where both tagged corpora and language speakers are mostly unavailable [11].
Some of them are even dead. Therefore, POS tagging without using the fully annotated corpora is
vital, but full of challenge. An increasing number of researchers tackle this problem [34]. Generally,
based on the way of using the annotated data, there are three directions for handling the task: POS
induction, where no prior knowledge is employed, POS disambiguation, where a dictionary of
words and their possible tags is used, and prototype-driven learningwhere a small set of prototypes
for each POS tag is provided instead of a dictionary.
One the one hand, for fully unsupervised POS tagging, POS induction, some efforts have been

made using the clustering techniques by casting the identification of POS tags into a knowledge-
free clustering problem. Brown et al. [8] employ an n-gram model based on classes of words. It
aims to optimize the probability of the corpus p (w1 |c1)∏n

2 p (wi |ci )p (ci |ci−1) using some greedy
hierarchical clustering. Following this way, Clark [12] employs morphological information in the
clustering so that morphologically similar words are clustered together. Based on a standard tri-
gramHMM,Goldwarter andGriffiths [18] employ a fully Bayesian approach and the use of priors is
allowed. A collapsed Gibbs sampler is employed to inferring the hidden tags. Instead of only using
Gibbs sampling, both variational Bayesian EM and Gibbs sampling are employed in Reference [20]
and experimental results show that variational Bayesian EM converges faster than Gibbs sampling
for POS tagging. Using the structure of a standardHMM, Berg-Kirkpatrick et al. [4] assume that the
distributions are logistic and each component multinomial of the HMM is turned into a miniature
logistic regression. Therefore, features can be easily added to standard generative models for unsu-
pervised learning, without requiring complex new training methods. Different from the previous
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approaches, a graph clustering approach based on contextual similarity is proposed in Reference
[5] so that the number of POS tags (clusters) is induced automatically. Clustering is conducted
on the most frequent n words and low frequency words separately and the clusters are merged
together. Based on the theory of prototypes, Abend et al. [1] first cluster words based on a fine
morphological representation. The most frequent words are clustered using distributional repre-
sentation and landmark clusters are defined serving as the cores of the induced POS categories.
The rest of the words is mapped to these categories. Kairit et al. [29] present an approach for in-
ducing POS classes by combining morphological and distributional information in non-parametric
Bayesian generative model based on distance-dependent Chinese restaurant process. As pointed
out in Reference [11], due to a lack of standard and informative evaluation techniques, it is difficult
to compare the effectiveness of different clustering methods.
On the other hand, for weakly supervised, many researchers focused on POS disambiguation

using POS tag dictionaries. In Reference [6], a rule-based POS tagger is described, which captures
the learned knowledge into a set of simple deterministic rules instead of a large table of statis-
tics. In Reference [7], an unsupervised learning algorithm is proposed for automatically training
a rule-based POS tagger. Regard the ground-truth tag as latent variable, previous weakly super-
vised POS tagging approaches are largely based on EM parameters estimation using HMMs or
CRFs. For example, given a sentenceW = w1w2...wn and a sequence of tags T = t1t2...tn , of the
same length, a triclass model defined as p (W ,T ) =

∏n
i=1 p (wi |ti )p (ti |ti−2ti−1) is employed in Ref-

erence [23]. Following this way, some improvements are achieved by modifying the statistical
model or employing better parameter estimation techniques. For example, Banko and Moore [3]
modify the basic HMM structure to employ the context on both sides of the word to be tagged. In
Reference [30], contrastive estimation is employed on CRF for POS tagging. In Reference [31], a
Bayesian model is proposed that extends the latent Dirichlet allocation model and incorporates the
intuition that words’ distributions over tags are sparse. Integer programming (IP) is employed to
search the smallest bi-gram POS tag set and this set was used to constrain the training of EM [26].
It achieves an accuracy of 91.6% on the 24k test set, but cannot handle large dataset. For solv-
ing the deficiency of IP, a two-stage greedy minimization approach is proposed in Reference [28]
that runs much faster while maintaining the performance of tagging. To further improve the per-
formance, several heuristics are employed in Reference [15]. Moreover, it works on incomplete
dictionary and achieves an accuracy of 88.52%. In Reference [27], distributed minimum label cover
is proposed, which can parallelize the algorithm while preserving approximation guarantees. It
achieves an accuracy of 91.4% on the 24k test set and 88.15% using incomplete dictionary. In Refer-
ence [32], unambiguous substitutes are chosen for each occurrence of an ambiguous word based on
its context. It achieves an accuracy of 92.25% using standard HMMmodel on standard 24k test set.
In Reference [24], multilingual learning is employed by combining cues from multiple languages
in two ways: directly merging tag structures for a pair of languages into a single sequence, and
incorporating multilingual context using latent variables. Markov chain Monte Carlo sampling
techniques are employed for estimating the hierarchical Bayesian models.
Instead of using tag dictionaries, a few canonical examples of each POS tag are employed based

on prototype-driven learning [19]. The provided prototype information is propagated across a
corpus using distributional similarity features in a log linear generative model. Following this way,
a closed-class lexicon specifying possible tags is required and a disambiguation model is learned
for disambiguating the occurrences of words in context [35].

Our work is similar to the second way in the sense that we also focus on POS tagging using
tag dictionaries. However, most previous approaches try to disambiguate the word’s possible tags
by identifying the ground-truth tag iteratively. This disambiguation is prone to be misled by the
false positive tags within possible tag sets. In this article, we propose a novel approach for weakly
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Table 2. Notations

Symbol Description
O A list of distinct POS tags
D A dictionary of words and their corresponding possible POS tags
U An unannotated corpus consisting of sentences
G A list of words and their corresponding word embeddings
L ECOC codeword length
B Binary learner used for ECOC training
thr The threshold controlling the size of binary training set
T The training dataset

supervised POS tagging without disambiguation. The set of possible tags is treated as an entirety
without disambiguation. Moreover, instead of manual feature engineering employed in most pre-
vious weakly supervised POS tagging approaches, features for training and testing in the proposed
framework are automatically generated using neural language modeling. The proposed approach
was evaluated on three corpora for English, Italian, and Malagasy POS tagging, and observed a
significant improvement in accuracy compared to the state-of-the-art approaches. From the per-
spective of machine learning, our approach falls into the partial label learning framework [33] in
which each training instance is associated with a set of candidate labels, among which only one is
correct. However, our problem setting here is different. The only supervision information we have
is a POS tag dictionary, which lists all possible POS tags for each word. The annotations of training
instances need to be generated based on the POS tag dictionary. That is why we incorporate the
Training Data Generation component in the proposed framework. Moreover, the tag dictionary is
equally applied to both the training and testing instances. Such constrains are applied in the test
data using the constrained ECOC.

3 THE PROPOSED APPROACH

Assuming a full list of POS tags O , and a dictionary of words, and their corresponding possible
POS tags D, we aim to predict the POS tag for a given word w in a sentence. First, each word w
in an unlabeled corpus U is converted into a feature vector based on neural language modeling.
The word’s feature vector together with its neighboring words’ feature vectors form the word’s
context feature set. For each word w , its context feature set ϕ (w ) and its corresponding possible
POS tagsAw , which are retrieved from the dictionaryD, form one training example in the training
dataset T . After that, the encoding-decoding procedure is conducted. Table 2 lists notations used
in this article. The architecture of the proposed approach is illustrated in Figure 1, which consists
of two main components, one is Training Data Generation and the other is Training and Testing

Based on Constrained ECOC. The details of each component are described as follows.

3.1 Error Correcting Output Codes (ECOC)

As the proposed approach for POS tagging is based on ECOC,we give a brief introduction to ECOC.
In machine learning, multi-class classification problem is the problem of classifying instances into
one of the more than two classes. ECOC is a widely applied strategy for multi-class classification
that enhances the generalization ability of binary classifiers.
Assuming there are B (B > 2) labels y1,y2, . . . ,yB , one assigns a unique L-bit vector to each

label yi . It can be viewed as a unique coding for the label. The set of bitvectors is referred to
as coding matrix and denoted as M . The coding matrix M can appear in different forms such as
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Fig. 1. The architecture of the proposed approach for weakly supervised POS tagging.

binary form [14] with value {+1,−1} and ternary form [2] with value {+1, 0,−1}. In our proposed
approach,M ∈ {+1,−1}B×L .

Then, the ECOC method can be separated into two steps: encoding and decoding. In the encod-
ing step, a binary classifier is learned for each column of the coding matrix M , which specifies a
dichotomy over the label space. Therefore, each column corresponds to a binary classifier, which
separates the set of classes into two meta-classes. The instance x , which belongs to the class yi ,
is considered as a positive instance for the jth classifier if and only if Mi, j = +1 and is a negative
instance if and only ifMi, j = −1. In the decoding step, the codeword of an unlabeled test instance
is generated by concatenating the predictive outputs of the L binary classifiers. The instance is
predicted to the class with the closest codeword according to some distance measure.
Generally, there are two popular binary coding schemes, the one-versus-rest scheme and dense

random scheme, for choosing L. In the one-versus-rest scheme, each binary classifier is trained
to discriminate one class against all the other classes. Obviously, the codeword is of length B, the
number of classes. In the dense random scheme, Allwein et al. [2] suggested an optimal codeword
length of 10 logB.

3.2 Training Data Generation

In this section, we describe how to generate training data based on word embeddings, which is
shown in Algorithm 1. Word embeddings aim to capture the syntactic or semantic regularities
among words such that words that are semantically similar to each other are placed in nearby
locations in the embedding space. This characteristic is precisely what we want. Word embedding
or word representation of each word is a real-value vector, usually with a dimension of between 50
and 300. We use neural language modeling [13] to learn word representations by discriminating
the legitimate phrase from incorrect phrases.
Given a word sequence p = (w1,w2, . . . ,wd ) with window size d , the goal of the model is to

discriminate the sequence of words p (the correct phrase) from a random sequence of words pr .
Thus, the objective of the model is to minimize the ranking loss with respect to parameters θ :

∑
p∈p

∑
r ∈R

max(0, 1 − fθ (p) + fθ (p
r )), (1)
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where p is the set of all possible text sequences with d words coming from the corpus U , R is the
dictionary of words, pr denotes the sequence of words obtained by replacing the central word of p
by the word r and fθ (p) is the ranking score of p. Therefore, the dataset for learning the language
model can be constructed by considering all the word sequences in the corpus. Positive examples
are the word sequences from the corpus, while negative examples are the same word sequence
with the central word replaced by a random one.

ALGORITHM 1: Training Data Generation

Input: O , D,U ,G
Output: T
1: Initialize the training dataset T = ∅;
2: for each wordw in each sentence of U do

3: Retrieve from G the word embeddings ofw , and its previous and next word;
4: Concatenate the retrieved vectors to form the feature ofw , ϕ (w );
5: Retrieve from D all possible POS tags Aw for wordw ;
6: Insert the pair (ϕ (w ),Aw ) into the training set T ;
7: end for

8: T = {(ϕ (wi ),Ai ) |1 ≤ i ≤ |U |}(wi ∈ U ,Ai ⊆ O );

To illustrate how the training data is generated, we present an example shown in Figure 2. Given
a sentence, “He is also trying to get more stations,” from unannotated corpus U , we want to gen-
erate a (ϕ (w ),Aw ) pair for “get.” The feature set ϕ (w ) of word “get” is generated by concatenating
word embeddings of “to,” “get,” and “more” retrieved from the dictionary of word embedding, the
output of neural language modeling. The candidate POS tags of the word “get” are VB and VBP
retrieved from the dictionary of POS tags.

3.3 Training and Testing Based on Constrained ECOC

In this section, we describe the proposed approach based on constrained ECOC for solving the
weakly supervised POS tagging problem, which does not rely on disambiguating possible tags.
Constrained ECOC follows the binary decomposition philosophy via an encoding-decoding pro-
cedure for multi-class classifier induction.
First, in the encoding phase, a |O | × L binary coding matrixM ∈ {+1,−1} |O |×L is needed, where
|O | is the number of distinct POS tags. Each row of the coding matrix M (j, :) represents an L-
bit codeword for one tag yj (See the right half of Figure 1). Each column of the coding matrix
M (:, l ) specifies a dichotomy over the tag space y with y+

l
= {yj |M (j, l ) = +1, 1 ≤ j ≤ |O |} and

y−
l
= {yj |M (j, l ) = −1, 1 ≤ j ≤ |O |}. Then, one binary classifier is built for each column by treating

training examples from y+
l
as positive ones and those from y−

l
as negative ones. For each training

instance, (ϕ (wi ),Ai ), where ϕ (wi ) is the feature vector of the word wi and Ai is its possible POS
tags that are retrieved from the dictionary D, the possible tag setAi associated withwi is regarded
as an entirety. The training instance (ϕ (wi ),Ai ) will be used as a positive (or negative) training ex-
ample only ifAi entirely falls intoy

+
l
(ory−

l
) to build the binary classifierhl . Otherwise, (ϕ (wi ),Ai )

will not be used in the training process of hl .
An example of how the training instance is used is illustrated in Figure 3. For the training in-

stance “[−0.807 −1.109 ... 2.338 0.567 −0.124 −0.564 ... 0.385 0.678 0.567 −0.4679 ... −0.614 1.36],
{VB, VBP},” which is generated in Figure 2, it can be used as a positive training example for h3,hL
as {VB, VBP} entirely falls into y+3 and y+L . Similarly, it can be used as a negative training example
for h2 as {VB, VBP} entirely falls into y−2 . It cannot be used in h1,h4.
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Fig. 2. An example of how the training data are generated.

Fig. 3. An example of how the training instance is used in ECOC.

Table 3. The Definition of Different Decodings

Decoding Definition

Euclidean
√∑n

i=1 (xi − yi )2
Attenuated Euclidean

√∑n
i=1 |yi | |xi |(xi − yi )2

Hamming
∑n

i=1 (1 − siдn(xi · yi ))/2
Inverse Hamming

max(Δ−1HT ), where Δ(i1, i2) = Hamming_Dist(yi1,yi2) and H is the
vector of Hamming decoding values of the x for each yi .

Laplacian
(αi + 1)/(αi + βi + |O |), where αi is the number of matched positions
between the codewords x and y, βi is the number of miss-matches
without considering the positions coded with 0.

Then, for any test wordw∗, an L-bit codeword h(ϕ (w∗)) is generated by concatenating the pre-
dictive outputs of the L binary classifiers: h(ϕ (w∗)) = [h1 (ϕ (w

∗)),h2 (ϕ (w∗)), . . . ,hL (ϕ (w∗))]T. Af-
ter that, the tag whose codeword is closest to h(ϕ (w∗)) is returned as the final prediction for w∗:

д(ϕ (w∗)) = argmin
yj

1 ≤ j ≤ |O |

dist (h(ϕ (w∗)),M (j, :)). (2)

Here, the distance function dist (, ) can be implemented in various ways such as hamming dis-
tance [14] or Euclidean distance [25]. Table 3 lists the functions and their corresponding definitions
employed in our approach.
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As for a test wordw∗, its candidate POS tagsAw∗ can be found in the dictionaryD. The final pre-
diction forw∗, д(ϕ (w∗)) must be in its candidate POS tags. To apply such constrains, Equation (2)
is modified as

д(ϕ (w∗)) = argmin
yj

1 ≤ j ≤ |O |
yj ∈ Aw∗

dist (h(ϕ (w∗)),M (j, :)). (3)

The proposed approach based on constrained ECOC is summarized in Algorithm 2. As shown
here, the proposed approach does not rely on any POS tag disambiguation strategy toward the
candidate label set and is instead treated in an integrative manner. The procedure is conceptu-
ally simple and amenable to different choices of the binary learner B, similar to the standard
ECOC mechanism. Furthermore, as reported in the next section, the performance of the pro-
posed approach is highly competitive against the state-of-the-art weakly supervised POS tagging
approaches.

ALGORITHM 2: Training and Testing Based on Constrained ECOC

Input: L, B, thr , T ,w∗ (the test word in a given sentence)
Output: The predicted POS tag forw∗

Encoding:

1: l = 0;
2: do

3: Randomly generate a |O |-bit column coding v = [v1,v2, . . . ,v |O |]T ∈ {−1,+1} |O | ;
4: Dichotomize the tag space according to v : y+v = {yj |vj = +1, 1 ≤ j ≤ |O |},y−v = y\y+v ;
5: Initialize the binary training set Tv = ∅;
6: for each wordwi appeared in U do

7: if Ai ⊆ y+v then

8: add ((ϕ (wi ),Awi
),+1) to Tv

9: end if

10: if Ai ⊆ y−v then

11: add ((ϕ (wi ),Awi
),−1) to Tv

12: end if

13: end for

14: if |Tv | ≥ thr then
15: l = l + 1;
16: Set the l-th column of the coding matrixM to v ;
17: Build the binary classifier hl by invoking B on Tv ;
18: end if

19: while l < L
Decoding:

20: Generate ϕ (w∗), the feature ofw∗, based on Algorithm 1;
21: Generate codeword h(ϕ (w∗)) by querying binary classifiers’ outputs;
22: Return y∗ = д(x∗) according to Equation (3).

4 EXPERIMENTS

4.1 Setup

For English POS tagging, we evaluate the proposed approach on Penn Treebank III (PTB) [21].
Following the same experimental setup as in References [15, 27, 28], we construct a dictionary
D from the entire Wall Street Journal data in PTB. There are 45 distinct POS tags in PTB such as
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Fig. 4. Distribution of words with different number of possible tags on 24k test set.

PRP, DT, CD, IN mentioned in Table 1, which form O . The dictionary contains 48,461 words and
56,602 word/tag pairs. We also build an unannotated corpusU by choosing the first 50,000 tokens
of PTB. Following the similar setup in previous methods [26, 32], we construct a standard test data
by collecting 24,115 word tokens from PTB. In the 24k test set, there are 5,175 distinct words with
8,162 word/tag pairs found in the dictionary D.

To fairly compare the proposed approach with the state-of-the-art approaches, we also build
larger datasets with different number of word tokens ranging from 48k, 96k, and 193k to the entire
PTB in addition to the standard 24k dataset. Figure 4 shows the percentage of wordswith a different
number of possible POS tags on different test sets. It can be observed that the unambiguous words
(with one POS tag only) approximately account for less than 45% of all words while more than 70%
of ambiguous words are with no more than four possible POS tags.
The dictionary D derived from the entire PTB is quite noisy due to the tagging errors. For ex-

ample, in the tagged sentence “... the/CD 1982/CD Salon/NNP is/VBZ a/DT beautiful/JJ wine/NN
...”, “the” is wrongly tagged as “CD.” To remove the noisy tags, we correct the tag dictionary using
the similar way in Reference [17].

As mentioned before, word embeddings are trained using neural language models [13]. Instead
of training by ourselves, we download theword embeddings from thewebsite,1 whichwere trained
on the entire English Wikipedia (November 2007 version). To represent the context features of a
target word, we concatenate the word embedding of the first left word, the target word, and first
right word to form a 150-dimensional vector of [wi−1,wi ,wi+1] and use it as the feature vector of
the target word. For words not appearing in the learnt word embeddings, we use various mor-
phological features to assign the word embeddings of the similar words to these words. The most
frequent 20 suffixes are chosen to handle unknown words such as “tion,” “ness,” “ment,” and so
on. For example, if the suffix of a wordw is “ing,” we randomly select a word with “ing” and assign
its word embedding tow . For a hyphenated word, we assign the word embedding of the latter part
to this word.
The codeword length L is set to �10 log2 ( |O |)�, as is typically set in ECOC-based approaches [38].

The binary learnerB is chosen to be support vector machines, using the implementation of Libsvm
[10]. The thresholding parameter thr is set to 1

10 |U |.

1ronan.collobert.com/senna/.
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Table 4. Performance Comparison of Weakly Supervised POS Tagging

on Different Test Sets (− Represents That No Result Was Reported

on the Test Set for This Method)

Tagging Accuracy
Methods 24k 48k 96k 193k PTB
HMM 81.7% 81.4% 82.8% 82.0% 82.3%
IP+EM 91.6% 89.3% 89.5% 91.6% −
MIN-GREEDY 91.6% 88.9% 89.4% 89.1% 87.1%
DMLC+EM 91.4% − − − 87.5%
RD 92.25% 92.47% − − −
Our approach 93.21% 93.15% 93.01% 92.77% 92.63 %

4.2 Baseline Construction

To evaluate the efficiency of the proposed framework for weakly supervised POS tagging, we
choose the following approaches as the baseline and compare the performance on the standard
test data (24k tokens) as well as larger test data (48k, 96k, 193k, and the entire PTB) for POS
tagging.

(1) HMM: Training a bigram HMM model using an EM algorithm.
(2) IP+EM [26]: Using IP to search the smallest bi-gram POS tag set and using this set to

constrain the training of EM.
(3) MIN-GREEDY [28]: Minimizing grammar size using the two-step greedy method.
(4) DMLC+EM [27]: An extension of MIN-GREEDY with a fast, greedy algorithm with formal

approximation.
(5) RD [32]: Unambiguous substitutes are chosen for each occurrence of an ambiguous word

based on its context using a standard HMM model with a filtered dictionary.

4.3 Overall Results

Table 4 shows the performance comparison results of weakly supervised POS tagging on different
test sets. Here, Laplacian decoding is used to implement the distance function between two binary
codewords. Other distance metrics have also been evaluated and the details will be elaborated in
Section 4.4.
It can be observed that our approach achieves the best performance on the 24k data, with an

accuracy of 93.21%. With the increasing size of the test dataset, the performance of the proposed
approach decreases slightly. It might attribute to, that for a larger test dataset, there is a big chance
that some words in the test data might have not been well learned in training data. Therefore, the
performance of the proposed approach on a larger test dataset is slightly worse than on a small
test dataset. Nevertheless, our approach outperforms all the baselines on all the test sets with the
improvements ranging from 0.68% to 11.51% on accuracy. Overall, we see superior performance
achieved by our proposed approach.
To investigate the degree of disambiguation achieved by our proposed approach, we analyze the

accuracy of POS tagging on words with a different number of possible tags, one (unambiguous),
two, three, four, and more than four. As shown in Figure 5, the accuracy of POS tagging on words
with only one POS tag is 100%. For words with two to four possible tags, the POS tagging accuracy
of our approach is fairly stable. We observe that the accuracy on words with two possible tags is
less than 90% but the accuracy on words with three possible tags is around 90%. This is somewhat
contrary to our prior belief. By further analyzing the results, we found that a majority of words
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Fig. 5. Accuracy of words with different number of possible tags on 24k test set.

Fig. 6. Performance comparison of unsupervised POS tagging using different decodings on different test

sets.

with two possible POS tags are those tagged with either (VB, VBP) or (VBD, VBN). Since VB and
VBP co-occur quite often in the dictionary D and, similarly for VBD and VBN, these two pairs of
tags are difficult to be disambiguated by our approach. It can be observed that the accuracy of POS
tagging on words with four possible tags is lower than the accuracy on words with > 4 possible
tags. It might attribute to the insufficient training data for the words with four possible tags as
shown in Figure 4.

4.4 The Impact of Different Decoding Functions

As described in Section 3.3, various distance functions can be used to decode the codewords of
target word w . To investigate the impact of decoding, we conducted experiments using various
distance functions on different sizes of test sets with 50k train set. The performance of POS tag-
ging with different distance measures are presented in Figure 6 while the definitions of different
decodings are presented in Table 3.
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Table 5. Performance Comparison of the Proposed Approach

Trained onU with Different Sizes

Tagging Accuracy
Size of U 24k 48k 96k 193k PTB

50k 93.21% 93.15% 93.01% 92.77% 92.63%
100K 93.10% 93.10% 93.18% 93.05% 92.87%
150k 93.20% 93.09% 93.17% 93.11% 92.91%

200K 93.09% 93.02% 93.09% 93.04% 92.91%

Table 6. Performance

Comparison with

an Incomplete Dictionary

(Dictionary Is Derived from

Section 00−15 and Test Data Is

from Section 22−24 of PTB)
Method Accuracy
Random 63.53%
EM 69.20%
DMLC+EM 88.11%
Type+HMM 88.52%
Our approach 91.52%

4.5 The Impact of Difference Sizes of Unannotated CorpusU

In this subsection, we investigate how the POS tagging performance changes with different sizes
ofU . It can be observed from Table 5 that for some big test datasets such as 193k, PTB, the perfor-
mance of the proposed approach increases gradually and then converges with more unannotated
data, just as we expected. Generally, for weakly supervised approaches, their performance will
increase and then converge with more unannotated data. However, for some small test datasets,
the performance of the proposed approach fluctuates slightly. It might be explained by that the
small test dataset has the big chance of sharing different distribution with the training data. The
evaluation on the small test dataset is not complete and stable.

4.6 The Impact of Dictionary D

In reality, it might be difficult to build a complete dictionary consisting of all possible words with
a correct set of POS tags. Therefore, it will be interesting to see how the proposed framework
performs when provided with an incomplete dictionary, meaning that some words in the test data
cannot be found in the dictionary.
We build a dictionary derived from section 00−15 in PTB. It consists of 39,087 words and 45,331

word/tag entries. We use Section 16 as raw data and perform final evaluation on Sections 22−24.
We use the raw corpus along with the unlabeled test data to train the proposed model. Unknown
words are allowed to have all possible tags.
We compare the performance of our approach with several baselines in Table 6. The Random

baseline simply chooses a tag randomly from the tag dictionary and gives an accuracy of 63.53%.
EM uses the standard EM algorithm and achieves an accuracy of 69.20%. The Type+HMM sys-
tem [15] learned taggers based onHMM from incomplete tag dictionaries. It improvesMIN-REEDY
algorithm [17] with several intuitive heuristics and achieves 88.52% in accuracy. As far as we know,
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Table 7. The Reduced Tag Set with 17 Tags

Reduced Tag Treebank tag
ADJ CD JJ JJR JJS PRP$
ADV RB RBR RBS
DET DT PDT

INPUNC ,:LS SYM UH
LPUNC “ -LRB

N EX FW NN NNP NNPS NNS PRP
RPUNC ” -RRB-

W WDT WP$ WP WRB
V MD VBD VBP VB VBZ

Table 8. Performance

Comparison of the Proposed

Framework with the Baseline

Approaches Using 17-Tagset on

the Standard 24k Test Data

Method Accuracy
BH-MM 87.3%
CE 88.7%
IP+EM 96.8%
RD 92.90%
Our approach 95.40%

it is the best score reported for this task in the literature. Our proposed approach gives an accuracy
of 91.52%, outperforming all the baselines, including the state-of-the-art approach, Type+HMM.
One possible reason is that our proposed approach constructed features from word embeddings.
Thus, words in the test data that are unseen in the POS tag dictionary D might still exist in the
learned word embeddings from Wikipedia.

4.7 The Impact of POS Tag Space

To evaluate the performance of our proposed framework with a coarse-grained dictionary, we use
a reduced tag set of 17 tags instead of the 45-tag set and conduct experiments on the standard 24k
test data, following a similar experimental setup as in previous approaches [15, 27, 28]. The details
of the reduction of POS Tag are presented in Table 7.
Table 8 summarizes the previously reported results on coarse-grained POS tagging. BH-MM is

a fully Bayesian approach that uses sparse POS priors and achieves an accuracy of 87.3%, CE is
based on the HMMmodel using contrastive estimation method and achieves an accuracy of 88.7%.
It can be observed that our approach achieves an accuracy of 95.4%, outperforming most baselines,
except IP+EM where our approach is only 1.4% lower.

4.8 The Impact of Constrained ECOC

As mentioned in Section 3.3, the final prediction for w∗, д(ϕ (w∗)) must be in its candidate POS
tags. Therefore, a constrain is applied in Equation (2) for predicting the POS tag. To investi-
gate the effect of incorporating of such constrain, we conducted experiments on different test
sets with and without such constrain. It can be observed from Figure 7 that the performance
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Fig. 7. Performance comparison of the proposed approach with or without the constrain on different test

sets.

Table 9. Performance Comparison of the Proposed

Approach with or without Using the Word Embedding

Feature Accuracy
Using Word Embedding Features 92.63%
Using Manually Constructed Features 92.45%

of the proposed model with the constrain outperforming the one without the constrain. It fur-
ther verifies the effectiveness of incorporating such constrain.

4.9 The Impact of Features Used

To find out whether the accuracy gain of the proposed method is due to incorporating the word
embedding features, we compare the performance of the proposed approach with or without using
the word embedding features. When not using word embedding features, we employ the manually
designed features instead, such as POS induction features (e.g., whether containing digit, hyphen)
and word alignment features (e.g., prefix, suffix, and stemming), following the same way as Ref-
erence [28]. The experimental results are presented in Table 9. The size of U is set to 50k and
the whole PTB is used as a test dataset. It can be observed that the proposed approach achieved
the similar performance with or without using the word embedding. It further verifies that the
performance gain achieved by the POS tagging systemmight attribute to the proposed constrained
ECOC-based approach.

4.10 Experimental Results on Italian and Malagasy

To explore whether the proposed approach is effective only for some specific language such as
English, we conduct experiments on two other languages, Italian and Malagasy.
For Italian language, the CCG-TUT corpus2 is employed for evaluating Italian POS tagging.

There are 90 distinct POS tags in CCG-TUT,which formO . The dictionary contains 8,177words and
8,733word/tag pairs. The unannotated corpusU was constructed using 42,100 tokens in CCG-TUT.

2www.di.unito.it/∼tutreeb/CCG-TUT.
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Table 10. Comparison of the Performance of the Proposed

Framework for Italian and Malagasy POS Tagging

Italian Malagasy
Method Accuracy Method Accuracy
EM 83.4% Reference [16] 80.7%
IP 88.0% DMLC+EM 81.1%
MIN-GREEDY 88.0%
Our approach 90.9% Our Approach 84.5%

Table 11. The Performance of the Proposed Approach Versus L on Malagasy Dataset

L 15 25 35 45 55 65 75 85 95
Accuracy 77.79% 80.18% 81.95% 81.67% 84.50% 80.05% 84.33% 84.69% 85.39%

A standard test set was constructed by collecting 21,878word tokens fromCCG-TUT. In the test set,
there are 3,838 distinctwordswith 4,078word/tag pairs found in the dictionaryD.We download 64-
dimensional word embeddings from the website3 which were trained on over 14 million sentences
extracted from the Italian Wikipedia with the window size set to 11. To represent the context
features of a target word, we take concatenated the word embedding of the first left word, the
target word, and the first right word to form a 192-dimensional vector of [wi−1,wi ,wi+1] and used
it as the feature vector of the target word.
For the Malagasy language, the dateset used in Reference [16]4 is employed for evaluating

Malagasy POS tagging. There are 44 distinct POS tags in the dataset. The dictionary contains
64,934 words and 67,256 word/tag pairs. The unannotated corpus U contains 20,000 word tokens,
among which, 8,674 tokens are from the training set of the dateset in Reference [16] and the oth-
ers are from Malagasy Wikipedia. The held-out test set contains 1,602 words and 1,683 word/tag
pairs (5303 tokens). To generate Malagasy word embeddings, we downloaded the whole Malagasy
Wikipedia.5 Two-hundred ninety-thousand sentences extracted from the corpus were employed
for generating 128-dimensional word embeddings using word2vec.6

Table 10 shows the experimental results of the proposed approach and some baseline approaches
on Italian and Malagasy POS tagging. It can be observed that our proposed approach achieves an
accuracy of 90.9% on Italian and an accuracy of 84.5% on Malagasy, which are better than all
the baselines. It further validates the effectiveness of our proposed approach regardless of the
language.
We also conduct an experiment by changing L on Malagasy dataset. Experimental results are

presented in Table 11. It can be observed that choosing 10 log |O | = 55 (|O | = 44, the number of
distinct POS tags in Malagasy dataset) almost achieves the best performance.

5 CONCLUSIONS AND FUTURE WORK

In this article, we propose a novel approach based on constrained ECOC for weakly supervised
POS tagging. It does not require an iterative training procedure for POS tag disambiguation. Any
word will be treated as a positive or negative training example only if its possible tags entirely fall
into the positive or negative dichotomy specified by the column coding in ECOC. In this way, the

3tanl.di.unipi.it/embeddings/overview.html.
4github.com/dhgarrette/low-resource-pos-tagging-2013.
5we use the dump file “mgwiki-20161201-pages-articles-multistream.xml.bz2.”
6code.google.com/p/word2vec.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 4, Article 35. Publication date: July 2018.

tanl.di.unipi.it/embeddings/overview.html
github.com/dhgarrette/low-resource-pos-tagging-2013
code.google.com/p/word2vec


Weakly Supervised POS Tagging without Disambiguation 35:17

set of possible tags of each word is treated as an entirety without resorting to any disambiguation
procedure. Moreover, features employed for POS tagging are generated without manual interven-
tion.We have evaluated the proposed approach on three corpora for English, Italian, andMalagasy
POS tagging, and observed a significant improvement in accuracy compared to the state-of-the-art
approaches. In the future, we will investigate other ways to generate the coding matrix for pos-
sible performance improvement. Also, we will explore other disambiguation-free approaches for
weakly supervised POS tagging.
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